Einstein metrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

on einstein (α,β )-metrics

– in this paper we consider some (α ,β ) -metrics such as generalized kropina, matsumoto and f (α β )2α = + metrics, and obtain necessary and sufficient conditions for them to be einstein metrics when βis a constant killing form. then we prove with this assumption that the mentioned einstein metrics must beriemannian or ricci flat.

متن کامل

Einstein Metrics on Spheres

Any sphere S admits a metric of constant sectional curvature. These canonical metrics are homogeneous and Einstein, that is the Ricci curvature is a constant multiple of the metric. The spheres S, m > 1 are known to have another Sp(m + 1)-homogeneous Einstein metric discovered by Jensen [Jen73]. In addition, S has a third Spin(9)-invariant homogeneous Einstein metric discovered by Bourguignon a...

متن کامل

Affine Hermitian-einstein Metrics

Here c1(E, h) is the first Chern form of E with respect to a Hermitian metric h. The famous theorem of Donaldson [7, 8] (for algebraic manifolds only) and Uhlenbeck-Yau [24, 25] says that an irreducible vector bundle E → N is ω-stable if and only if it admits a HermitianEinstein metric (i.e. a metric whose curvature, when the 2-form part is contracted with the metric on N , is a constant times ...

متن کامل

4-Manifolds without Einstein Metrics

It is shown that there are infinitely many compact orientable smooth 4-manifolds which do not admit Einstein metrics, but nevertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The examples in question arise as non-minimal complex algebraic surfaces of general type, and the method of proof stems from Seiberg-Witten theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1990

ISSN: 0022-040X

DOI: 10.4310/jdg/1214445042